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LETTER TO THE EDITOR

Commutation relations for linear fields: a coordinate-free
approach

K C Hannabuss
Balliol College, Oxford OX1 3BJ, UK

Received 30 November 1998

Abstract. The commutation relations for a linear system are given directly in terms of the classical
energy and equations of motion, without the need for a normal mode expansion. The formula is
illustrated in the case of the free electromagnetic field.

The commonest methods of deriving the commutation relations for fields are probably to
decompose into normal modes or to find canonical coordinates and momenta, and both methods
depend in some measure on a choice of coordinates. For linear systems the symplectic forms

provides a coordinate-free alternative [3, 4]. (This is just the Poisson bracket applied to linear
functions on phase spaceV , and can be characterized as an antisymmetric bilinear form on
V having maximal rank.) Eacha ∈ V defines a linear function (the moment map) on phase
spaceφa(v) = s(a, v), and every linear function is of this form. The Poisson bracket of two
such functions is given by{φa, φb} = s(a, b), giving us the Dirac quantization rule

[Q(φa),Q(φb)] = ih̄s(a, b) (1)

for the quantized observablesQ(φa) andQ(φb). Unfortunately, although geometrically
natural, the symplectic form is often not immediately known, and must first be calculated
from the energy and equations of motion. The purpose of this letter is to point out that a
slight modification leads to a more efficient procedure for finding the symplectic structure and
commutation relations at the same time. The difference will be illustrated in the case of the
free electromagnetic field.

In classical Hamiltonian mechanics the trio of Poisson bracket, HamiltonianHcl and time
evolution are related by the equation

df

dt
= ∂f

∂t
+ {Hcl, f } (2)

and each member of the trio can be recovered from the other two. In practice we most readily
know the time evolution equations and the Hamiltonian, which for these linear systems is just
the energy,E. The energy of a linear system is a quadratic function on phase space, from
which we may easily derive the symmetric bilinear form

E(u, v) = E(u + v)− E(u)− E(v). (3)

(We haveE(u, u) = E(2u) − 2E(u) = 4E(u) − 2E(u) = 2E(u), and this determinesE
uniquely.) The positivity ofE means thatE actually defines a real inner product on phase
space. The linear functionsEu(v) = E(u, v) define classical phase space observables in
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terms of which we can give the commutation relations. Before doing so, however, we need
to introduce the equations of motion. For a linear system these can be given directly as a
differential equation for the phase space trajectory of the form

dv

dt
= �v (4)

wherev ∈ V and� is a linear operator onV .
Hamilton’s equations of motion for linear systems may be expressed as

s(�u, v) = E(u, v) (5)

(see [2] equation (4.1) or, for a direct proof, the appendix.) This means thatEu = φ�u, so that

{Eu, Ev} = {φ�u, φ�v} = s(�u,�v) = E(u,�v) (6)

and Dirac’s quantization condition now gives us the commutation relation

[Q(Eu),Q(Ev)] = ih̄E(u,�v). (7)

We shall now give some examples to show how easily this leads to the commutation relations.

Example 1

As a first illustration we first apply this result to a one-dimensional oscillator, with energy

E(x, p) = p2

2m
+

1

2
mω2x2. (8)

We immediately calculate that

E((x1, p1), (x2, p2)) = m−1p1p2 +mω2x1x2. (9)

Fora = (ap, ax), we have the linear function

Ea(x, p) = m−1app +mω2axx. (10)

The equations of motion,̇x = m−1p, ṗ = −mω2x, can be expressed in the matrix form

d

dt

(
x

p

)
=
(
m−1p

−mω2x

)
=
(

0 m−1

−mω2 0

)(
x

p

)
(11)

so that

� =
(

0 m−1

−mω2 0

)
. (12)

Combining these, and writingP = Q(p) andX = Q(x) for the quantized momentum and
position, the commutation relation (7) becomes

[m−1apP +mω2axX,m
−1bpP +mω2bxX] = ih̄(ap(−ω2bx) + ω2axbp) (13)

or

ω2(axbp − apbx)[X,P ] = ih̄ω2(axbp − apbx). (14)

In other words we recover the normal commutation relations between position and momentum.
One can easily extend this example to cover arbitrary finite-dimensional oscillators.
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Example 2

This method is particularly useful for systems such as the free electromagnetic field, for which
there are no obvious coordinates and momenta. The energy of the electromagnetic field is
given by

E(E,B) = 1
2

∫
(ε0|E|2 +µ−1

0 |B|2) d3x (15)

from which we obtain the bilinear form

E((e1, b1), (e2, b2)) =
∫
(ε0e1 · e2 +µ−1

0 b1 · b2) d3x (16)

on vector-valued test functionsek andbk. (Phase space consists of pairs of such functions
(e, b) having finite energy.)

Maxwell’s equations for the electromagnetic field give

∂E

∂t
= c2curl B and

∂B

∂t
= −curl E (17)

so that
∂

∂t

(
E

B

)
=
(

0 c2curl
−curl 0

)(
E

B

)
(18)

from which we obtain

� =
(

0 c2curl
−curl 0

)
. (19)

Then the commutation relations take the form

[Q(E(e1,b1)),Q(E(e2,b2))] = E((e1, b1), (c
2curlb2,−curle2)) (20)

= ih̄
∫
µ−1

0 (e1 · curlb2 − b1 · curle2) d3x. (21)

Writing

Q(E(e,0)) =
∫
ε0Ê(x) · e(x) d3x and Q(E(0,b)) =

∫
µ−1

0 B̂(x) · b(x) d3x (22)

we deduce that the components of the quantized electric fieldÊ commute amongst themselves
as do those of the quantized magnetic fieldB̂, but that the electric and magnetic fields do not
commute with each other. Indeed, lettingb1 ande2 vanish and dropping the suffices on the
other two test fields we have[ ∫

ε0Ê(x) · e(x) d3x,

∫
µ−1

0 B̂(y) · b(y) d3y

]
= ih̄

∫
µ−1

0 e · curlb d3x (23)

from which the usual fixed time commutation relations,

[Êj (x), B̂k(y)] = −ih̄µ0c
2εjklδ,l(x− y) (24)

follow immediately.
We can also see that, for anyf , B̂(gradf ) commutes with all the fields. Moreover, a

formal use of the divergence theorem gives

B̂(gradf ) =
∫
B̂(x) · gradf (x) d3x = −

∫
div B̂(x)f (x) d3x (25)

so that divB̂ commutes with all fields. This permits us to impose the additional constraint that
div B̂ = 0. Similarly we can impose the Gauss constraint divÊ = 0
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We conclude by noting that, in this case, the identityφ�u = Eu becomes

φ(c2curlb,−curle) = E(e,b). (26)

Not only is an integration required to obtain an explicit formula forφ(e,b), but the resulting
expression in terms of Green’s functions is non-local, which somewhat obscures the meaning
of the resulting commutation relation for theQ(φ(e,b)). By contrast, the commutation relations
for Q(E(e,b)) are manifestly local and transparent.

Example 3

Consider electromagnetic radiation interacting with a continuum of dipoles as in the model of
a light polarization measurement presented in [1]. Maxwell’s equations relating the classical
electric and magnetic fields,e andb, with the dielectric polarization vectorp and its derivative
j = ∂p/∂t , give

∂e

∂t
= c2curlb− ε−1

0 j
∂b

∂t
= −curle. (27)

The polarization vector is thought of as the sum of the molecular dipole moments, and restoring
and damping forces give an equation of the form

∂j

∂t
+ ηj + ω2

0p = ν−1e. (28)

For the present purposes we shall ignore the damping term andη = 0. The Hamiltonian for
the system is given by

E = 1
2

∫
(ε0(|e|2 + c2|b|2) + ν(|j|2 + ω2

0|p|2)) dV. (29)

In equilibrium whenj = 0 andp = e/νω2
0, with e andb constant, this reduces to the usual

formula for the dielectric energy.
We obtain the following commutation relations from the equations of motion and formula

for the energy,

i

h̄
[Q(e1, b1,p1, j1),Q(e2, b2,p2, j2)] =

∫
µ−1

0 (curlb1 · e2 − curle1 · b2) dV

+
∫
(e1 · j2 − e2 · j1) dV +

∫
νω2

0(j1 · p2 − j2 · p1) dV.

Appendix. The relation between the energy and the symplectic form

For completeness we sketch a proof of the crucial relationships(u̇, v) = s(�u, v) = E(u, v),
used earlier. Sinceu andv are made up out of linear coordinate functions, the definition ofs

together with Hamilton’s equations give us

s(u̇, v) = {u̇, v} = {{Hcl, u}, v}. (30)

AsHcl = E, the right-hand side, which can be rearranged as{v, {u,Hcl}}, is just the second
derivativeDvDuE of the energy. Now the directional (Fréchet) derivative of the energy is

(DuE)(w) = d

ds
E(w + su)|s=0 = d

ds
(E(w) + sE(w, u) + s2E(u))|s=0 = E(u,w) (31)

and a second derivative is

(DvDuE)(w) = d

ds
E(u,w + sv)|s=0 = E(u, v) (32)
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so thats(�u, v) = {v, {u,Hcl}} = E(u, v), as we claimed.
One can follow a similar route with nonlinear systems and quantize classical functions

φ{H,u}, but, as there is no longer a distinguished set of linear variablesu, the result is somewhat
arbitrary.
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